Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 125-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507204

RESUMO

X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.


Assuntos
Biologia Molecular , Proteínas , Cristalografia por Raios X , Microscopia Crioeletrônica/métodos , Proteínas/química , Substâncias Macromoleculares/química
2.
Front Immunol ; 14: 1190943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409124

RESUMO

Leptospirosis is a neglected worldwide zoonosis involving farm animals and domestic pets caused by the Gram-negative spirochete Leptospira interrogans. This bacterium deploys a variety of immune evasive mechanisms, some of them targeted at the complement system of the host's innate immunity. In this work, we have solved the X-ray crystallographic structure of L. interrogans glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to 2.37-Å resolution, a glycolytic enzyme that has been shown to exhibit moonlighting functions that potentiate infectivity and immune evasion in various pathogenic organisms. Besides, we have characterized the enzyme's kinetic parameters toward the cognate substrates and have proven that the two natural products anacardic acid and curcumin are able to inhibit L. interrogans GAPDH at micromolar concentration through a noncompetitive inhibition modality. Furthermore, we have established that L. interrogans GAPDH can interact with the anaphylatoxin C5a of human innate immunity in vitro using bio-layer interferometry and a short-range cross-linking reagent that tethers free thiol groups in protein complexes. To shed light into the interaction between L. interrogans GAPDH and C5a, we have also carried out cross-link guided protein-protein docking. These results suggest that L. interrogans could be placed in the growing list of bacterial pathogens that exploit glycolytic enzymes as extracellular immune evasive factors. Analysis of the docking results indicates a low affinity interaction that is consistent with previous evidence, including known binding modes of other α-helical proteins with GAPDH. These findings allow us to propose L. interrogans GAPDH as a potential immune evasive factor targeting the complement system.


Assuntos
Leptospira interrogans , Leptospirose , Animais , Humanos , Imunidade Inata , Proteínas do Sistema Complemento , Gliceraldeído-3-Fosfato Desidrogenases , Anafilatoxinas
3.
Nat Commun ; 13(1): 1955, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413960

RESUMO

Complement activation on cell surfaces leads to the massive deposition of C3b, iC3b, and C3dg, the main complement opsonins. Recognition of iC3b by complement receptor type 3 (CR3) fosters pathogen opsonophagocytosis by macrophages and the stimulation of adaptive immunity by complement-opsonized antigens. Here, we present the crystallographic structure of the complex between human iC3b and the von Willebrand A inserted domain of the α chain of CR3 (αI). The crystal contains two composite interfaces for CR3 αI, encompassing distinct sets of contiguous macroglobulin (MG) domains on the C3c moiety, MG1-MG2 and MG6-MG7 domains. These composite binding sites define two iC3b-CR3 αI complexes characterized by specific rearrangements of the two semi-independent modules, C3c moiety and TED domain. Furthermore, we show the structure of iC3b in a physiologically-relevant extended conformation. Based on previously available data and novel insights reported herein, we propose an integrative model that reconciles conflicting facts about iC3b structure and function and explains the molecular basis for iC3b selective recognition by CR3 on opsonized surfaces.


Assuntos
Antígeno de Macrófago 1 , Proteínas Opsonizantes , Sítios de Ligação , Antígeno CD11b , Complemento C3b/metabolismo , Proteínas do Sistema Complemento , Humanos , Antígeno de Macrófago 1/metabolismo
4.
Free Radic Biol Med ; 141: 279-290, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238127

RESUMO

Catalases are among the main scavengers of reactive oxygen species (ROS) present in the peroxisome, thereby preventing oxidative cellular and tissular damage. In human, multiple diseases are associated with malfunction of these organelles, which causes accumulation of ROS species and consequently the inefficient detoxification of cells. Despite intense research, much remains to be clarified about the precise molecular role of catalase in cellular homeostasis. Yeast peroxisomes and their peroxisomal catalases have been used as eukaryotic models for oxidative metabolism, ROS generation and detoxification, and associated pathologies. In order to provide reliable models for oxidative metabolism research, we have determined the high-resolution crystal structures of peroxisomal catalase from two important biotechnology and basic biology yeast models, Pichia pastoris and Kluyveromyces lactis. We have performed an extensive functional, biochemical and stability characterization of both enzymes in order to establish their differential activity profiles. Furthermore, we have analyzed the role of the peroxisomal catalase under study in the survival of yeast to oxidative burst challenges combining methanol, water peroxide, and sodium chloride. Interestingly, whereas catalase activity was induced 200-fold upon challenging the methylotrophic P. pastoris cells with methanol, the increase in catalase activity in the non-methylotrophic K. lactis was only moderate. The inhibitory effect of sodium azide and ß-mercaptoethanol over both catalases was analyzed, establishing IC50 values for both compounds that are consistent with an elevated resistance of both enzymes toward these inhibitors. Structural comparison of these two novel catalase structures allows us to rationalize the differential susceptibility to inhibitors and oxidative bursts. The inherent worth and validity of the P. pastoris and K. lactis yeast models for oxidative damage will be strengthened by the availability of reliable structural-functional information on these enzymes, which are central to our understanding of peroxisomal response toward oxidative stress.


Assuntos
Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Estresse Oxidativo/genética , Catalase/química , Catalase/genética , Eucariotos/enzimologia , Eucariotos/genética , Humanos , Kluyveromyces/enzimologia , Oxirredução , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Pichia/enzimologia , Espécies Reativas de Oxigênio/metabolismo
5.
J Vis Exp ; (124)2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28671653

RESUMO

We demonstrate methods for the expression and purification of tRNA(UUU) in Escherichia coli and the analysis by gel retardation assays of the binding of tRNA(UUU) to TcdA, an N6-threonylcarbamoyladenosine (t6A) dehydratase, which cyclizes the threonylcarbamoyl side chain attached to A37 in the anticodon stem loop (ASL) of tRNAs to cyclic t6A (ct6A). Transcription of the synthetic gene encoding tRNA(UUU) is induced in E. coli with 1 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) and the cells containing tRNA are harvested 24 h post-induction. The RNA fraction is purified using the acid phenol extraction method. Pure tRNA is obtained by a gel filtration chromatography that efficiently separates the small-sized tRNA molecules from larger intact or fragmented nucleic acids. To analyze TcdA binding to tRNA(UUU), TcdA is mixed with tRNA(UUU) and separated on a native agarose gel at 4 °C. The free tRNA(UUU) migrates faster, while the TcdA-tRNA(UUU) complexes undergo a mobility retardation that can be observed upon staining of the gel. We demonstrate that TcdA is a tRNA(UUU)-binding enzyme. This gel retardation assay can be used to study TcdA mutants and the effects of additives and other proteins on binding.


Assuntos
Adenosina/análogos & derivados , Eletroforese em Gel de Ágar/métodos , RNA de Transferência/química , Adenosina/análise , Adenosina/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...